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Abstract. Knowledge Graphs (KGs) have proven to be a reliable way of
structuring data. They can provide a rich source of contextual informa-
tion about cultural heritage collections. However, cultural heritage KGs
are far from being complete. They are often missing important attributes
such as geographical location, especially for sculptures and mobile or in-
door entities such as paintings. In this paper, we first present a frame-
work for ingesting knowledge about tangible cultural heritage entities
from various data sources and their connected multi-hop knowledge into
a geolocalized KG. Secondly, we propose a multi-view learning model for
estimating the relative distance between a given pair of cultural heritage
entities, based on the geographical as well as the knowledge connections
of the entities.

Keywords: Cultural heritage · Geolocation · Knowledge graphs · Multi-
view graph embedding.

1 Introduction

The term cultural heritage includes tangible heritage, which can be further spec-
ified in i) movable (such as paintings, sculptures, coins); ii) immovable (such as
monuments, archaeological sites), and intangible heritage, such as traditions and
performing arts [7]. Preparing cultural heritage collections for exploration by a
wide range of users with different backgrounds requires to integrate heteroge-
neous data into modern information systems.

Knowledge graphs (KGs) have proven to be a reliable way of structuring
data in wide range of domains, including the cultural heritage domain [8, 10].
KGs, such as Wikidata [17], are large directed network of real-world entities
and relationships between them, where facts are represented as triplets in the
form of (head entity, relation, tail entity). They enable to connect knowledge
about cultural heritage collections, and enrich this knowledge with external data
coming from heterogeneous sources.
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A key challenge for KGs is the human annotation required, resulting in them
remaining incomplete. Many general purpose KGs, such as Wikidata [17], are
missing latitude and longitude coordinates for the entities representing tangi-
ble cultural heritage (especially the movable ones). In this paper, we present a
method for estimating the relative distance between a given pair of cultural her-
itage entities in a KG. In particular, we propose a joint learning model to learn
comprehensive and representative entity embeddings, based on entity geograph-
ical location and semantics. Moreover, we present a framework for ingesting city
cultural heritage from multiple general purpose data sources into a geolocalized
KG.

In brief, our main contributions are as follows:

– We present an ingestion tool and related system framework to create a geolo-
calized KG for cultural heritage exploration, by ingesting data from hetero-
geneous data sources based on city coordinates. The tool is based on Neo4j4

graph-database and is published as open source on GitHub5.
– We introduce new KG datasets for the geolocation prediction task, with a

KG containing both spatial and non-spatial entities and relations.
– We propose a method that introduces a geospatial distance restriction to

refine the embedding representations of geographic entities in a geolocal-
ized KG, which fuses geospatial information and semantic information into
a low-dimensional vector space. We then utilize this method for estimat-
ing the geographical distance between cultural heritage entities, where we
outperform state-of-the-art methods.

2 Related Work

In this section, we discuss work related to cultural heritage KGs, and geolocation
using KGs.

2.1 KGs for Cultural Heritage

There are some works that have proposed to use KGs to support cultural heritage
exploration. For example, Pellegrino et. al. have proposed [8], a general-purpose
approach to perform Question-Answering on KGs for querying data concern-
ing cultural heritage. They have assessed the system performance on domain-
independent KGs such as Wikidata [17] and DBpedia [1]. The authors of [10]
have proposed a semantic graph-based recommender system of cultural heritage
places, by modeling a graph representing the semantic relatedness of cultural
heritage places using tags extracted from the descriptive content of the places
from Wikipedia6.

4 https://neo4j.com/
5 https://github.com/MEMEXProject/MEMEX-KG
6 https://www.wikipedia.org/
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In addition, there are some existing cultural heritage specific KGs, related
to particular places or historical collections. For example, ArCO [2] is a KG
that provides ontology to link people, events, and places about Italian artifacts
and document collections. ArCO has been created from different data sources,
including general purpose KGs such as Wikidata and DBpedia. Linked Stage
Graph [14] which organizes and interconnects data about the Stuttgart State
Theaters. ArDO [18] is an ontology to represent the dynamics of annotations
of general archival resources. In our work, we propose a system framework for
ingesting knowledge about any city cultural heritage using heterogeneous data
coming from Wikidata [17], and any other geolocalized linked open data (LOD)
such as Europeana [3], into a geolocalized KG.

2.2 Geolocation using KGs

There have been only few works that have focused on the task of geographical
KG construction. The Guo et. al. have proposed GeoKG [4], a system framework
for extracting geographical knowledge from geographic datasets and represent
the knowledge by means of concepts and relations with the aid of GeoSPARQL7.
However, this work has focused on specific semantic relationships such as sub-
class of or instance of to describe the subclass concepts of the geographical
entities, such as river and railway station. In our work, we aim at constructing a
geolocalized KG where tangible cultural heritage entities can be represented with
richer semantic relations, such as architectural style, architect and exhibited at.

Moreover, there are works that focused on geographical KG completion and
location prediction. For example, the authors of [11] have proposed a transla-
tional embedding model that has the ability to capture and embed the geospatial
distance restriction with the semantic information of the geographical KG into
a vector space. Then, the optimized model outputs the refined representations
of geo-entities and geo-relations, which improves the completion performance on
the sparse geographical KG. However, this work does not consider the existence
of non geo-entity and non geo-relations in the KG. In our work, we aim at pre-
dicting the distance between two entities in a KG that contains both geographical
and non-geographical entities and relations.

3 Data Curation for Geolocalized Knowledge Graph

In this section, we discuss details about our developed ingestion tool, and the
related system framework for ingesting data about a given city and the cultural
heritage it contains into a geolocalized KG.

7 http://www.opengis.net/ont/geosparql
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Fig. 1. Information extraction workflow.

3.1 Data Sources

In this work, Wikidata8 and Europeana9 have been selected for enriching our
geolocalized KG, however other general purpose KGs and LOD can be incorpo-
rated. Wikidata is a public crowd-sourced knowledge base, with facts and figures
about tens of millions of items (93,207,191). The data are offered freely, with no
restriction on the reuse and modification (Creative Commons Zero). Wikidata
provides its data openly in an easy to use standard Resource Description Frame-
work (RDF). It provides much of its data in hundreds of languages. Already,
large amounts of data about cultural assets are being shared with Wikidata by
formal partnerships with Galleries, Libraries, Archives and Museums (GLAMS).

On the other hand, Europeana aims to facilitate the usage of digitized cul-
tural heritage resources from and about Europe [5]. It seeks to enable users to
access content in all European languages via the Europeana collections portal
and allow applications to use cultural heritage metadata via its open APIs. Eu-
ropeana holds metadata from over 3,700 providers [3], mostly GLAMS. However,
it uses a strictly federated ontology limiting the diversity of the meta-data.

3.2 Information Extraction Workflow

We propose a localized approach that grows a KG based on association to known
landmarks. We define two types of KG nodes: Place and Knowledge. The former
represents tangible data while the latter represents intangible data. As shown in
Figure 1, first, we use OpenStreetMap (OSM)10 to get the bounding box of the

8 https://www.wikidata.org/
9 https://www.europeana.eu/

10 https://www.openstreetmap.org/
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Fig. 2. A subset of our geolocalized KG (orange nodes are Knowledge and cyan ones
are Places).

target city. Then coordinates are used to query Wikidata to retrieve geo-entities
within the selected scope, using Wikidata coordinate location (P625) attribute.
Moreover, a list of interesting entity types can be predefined by the user, to
allow the ingestion tool to focus on specific cultural heritage related entities. We
use the Wikidata instance of (P31) and subclass of (P279) attributes to select
entities with specific types. These form the basis of our Places (node type is
Place) where related additional properties are downloaded.

From each of the identified Places, we then query associated nodes based on
all relations from Wikidata, this new set of nodes we refer to as Knowledge. This
could be for example, the architect of a building. We repeat this step searching
for new relationships a predefined number of times referred to as hops. We use
the same approach to ingest data from Europeana. For a given city, we retrieve
its coordinates using OSM, then a query is performed against Europeana API to
identify content within the GPS region to add nodes in the KG. Figure 2 shows
a small subset of our geolocalized KG.

3.3 NER for Data Integration

We utilize Named Entity Recognition (NER) technique in order to link KG
entities from different sources of information. More precisely, we use spaCy11, a
Python library with wide linguistic features. SpaCy annotates text with different
types of named entities. We focus on the types listed in Table 1. For each entity

11 https://www.spacy.io/
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Table 1. Named entity types used to integrate data from different sources.

Type Meaning

GPE Geopolitical entity, i.e., countries, cities, states.
LOC Non-GPE locations, mountain ranges, bodies of water.
FAC Buildings, airports, highways, bridges, etc.
PER People, including fictional ones.

ingested from Europeana, we apply NER to extract named entities from the title
of Europeana entity. Then, we match those extracted named entities with the
titles of Wikidata entities. If there is a match found, we create a relation (we
name it related to) between the matching Europeana and Wikidata entities. For
example, when applying NER on a Europeana entity titled “Carmen Amaya’s
last dance”, the named entity “Carmen Amaya” of type PER will be extracted,
and the Europeana entity will be linked to the entity titled “A Carmen Amaya”
from Wikidata in the KG.

4 Geolocation using Multi-view Graph Embedding

Given a geolocalized KG G, composed of a large number of triples in the form
of (head entity, relation, tail entity). All entities have associated type ∈ {Place,
Knowledge}, title S = [w1, w2, ..., wn] with n words. Additionally, most of the
Place entities have a latitude and longitude information. From our KG we aim
to predict the distance dt between any two Place entities, u and v, where the
latitude and longitude property is missing in at least one of those entities (i.e., the
distance between is unknown). To achieve this, we propose a method to construct
two types of Place entity correlations: 1) based on the geographical view using
the Place nodes, and 2) based on entity semantics using the Knowledge nodes.
An overview about our proposed approach is shown in Figure 3, and more details
are described in the following sections.

4.1 Geographical View

The geographical view aims at capturing the geographical relation between two
geo-entities, Places, in the KG. To represent this view, we extract an induced
subgraph around the two target entities. The subgraph represent how the two
geo-entities are connected to each other, in terms of direct links or common nodes
between the two target nodes. Since we are focusing on geographical view, we
restrict the common nodes to Place node type. We then embed the extracted
subgraph with a relational graph convolution network (R-GCN) [13] to represent
the geographical relation between the target entities. In more details, we perform
the following steps 1. Subgraph Extraction (sec. 4.1), and 2. Node Representation
(sec. 4.1).
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Fig. 3. The proposed approach for geographical location prediction.

Subgraph Extraction We assume that the paths (i.e., geo-entities and geo-
relations) on the KG connecting the two target nodes contain the information
that could imply the distance between the two target entities. Hence, as a first
step, we extract an enclosing subgraph around the target nodes. The enclosing
subgraph between nodes u and v is the graph induced by all the nodes that
occur on a path between u and v. The subgraph set is given by the intersection
of neighbors of the two target nodes followed by a pruning procedure.

More precisely, let Nk(u) and Nk(v) be set of nodes in the k-hop (undirected)
neighborhood of the two target nodes in the KG. We compute the enclosing
subgraph by taking the intersection, Nk(u)∩Nk(v), of these k-hop neighborhood
sets and then prune nodes that are isolated or at a distance greater than k from
either of the target nodes. This results in all the nodes that occur on a path of
length at most k+1 between nodes u and v, where we refer to it as the induced
subgraph G(u, v).

Node Representation We define an embedding for each entity (node) in the
subgraph G(u, v). Following [20], each node i in the subgraph is labeled with the
tuple (d(i, u), d(i, v)), where d(i, u) is the shortest distance between nodes i and
u (likewise for d(i, v)). The two target nodes, u and v, are labeled (0, 1), and
(1, 0) to be identifiable by the model. This scheme captures the position of each
node in the subgraph with respect to the target nodes, as shown in Figure 3. The
node features are defined as [one-hot(d(i, u))⊕ one-hot(d(i, v))], representing the
concatenation of the one-hot embedding of the labels.

Geographical View Embedding We use multiple layers of the multi-relational
R-GCN [13] to learn the embeddings of the extracted subgraph G(u, v). R-GCN
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adopts general message-passing scheme [19], where a node representation is iter-
atively updated by combining it with the aggregation of its neighbors’ represen-
tation. The subgraph representation of G(u, v) is obtained by average-pooling
of all the node representations: In the k-th layer of our graph neural network
(GNN), aki represents the aggregated message from the neighbors of node i. The
aggregation function is defined as:

aki =
∑R

r=1

∑
s∈Nr(i)

αk
r(s,i)W

k
r h

k−1
s , (1)

where R is the total number of unique relations, Nr(i) represents the neighbors
of node i under relation r, W k

r is the transformation matrix of the k-th layer over
relation r, and αr(s,i) is the edge attention weight at the k-th layer corresponding
to the edge between nodes s and i via relation r.

The latent representation of node i in the k-th layer is:

hk
i = ReLU(W k

0 h
k−1
i + aki ), (2)

whereW0 aims at retaining the information of the node itself using self-connection,
and ReLU is an activation function.

The subgraph representation of G(u, v) is obtained by average-pooling of all
the node representations:

hL
G(u,v) =

1
|V |

∑
i∈V hL

i , (3)

where V denotes the set of nodes in G(u, v), and L represents the number of
layers of message-passing.

4.2 Knowledge View

The knowledge view aims at representing the semantic relation between two
target geo-entities, Places, in the KG, by means of their surroundingKnowledge
nodes. We employ a graph attention network (GAT) [16] for representing each
target entity semantics based on entity textual title. Then, we concatenate the
representation of the two target entities and pass the concatenated representation
into a linear layer. In more details, as with Geographical View, we perform: 1.
Node Representation (sec. 4.2), and 2. Node Embedding (sec. 4.2).

Node Representation For each node in G with title S = [w1, w2, ..., wn] (n is
different for each node since each title might have different length), we initialize
the embedding of each word w with a pre-trained word vector from GloVe [9].
Let p denote the dimension of each word vector. We obtain the sentence rep-
resentation

−→
S by aggregating the embedding of each word, where

−→
S ∈ Rp. In

aggregation, we use only simple averaging due to its validity [21].
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Node Embedding We employ a GAT to learn representations of nodes. GAT
applies attention mechanism on graph-structured data. It updates the represen-
tation of a vertex by propagating information to its neighbors, where the weights
of its neighbor nodes is learned by attention mechanism automatically. Formally,

given the input vertex features
{−→
S1,

−→
S2, . . . ,

−→
Sn

}
, a GAT layer updates the vertex

representations by following steps:

eij = exp
(
ReLU

(
aT

[
Wk

−→
Si ⊕Wk

−→
Sj

]))
(4)

αij = softmaxj (eij) =
exp (eij)∑

k∈Ni
exp (eik)

(5)

h′
i = σ

∑
j∈Ni

αijWkhj

 (6)

where Wk and a are learnable parameters, ⊕ is the concatenation operation.

Knowledge View Embedding After calculating the embedding of each node
in the graph, we concatenate the embeddings of the target entities, u and v.
Then, we pass these concatenated representations through a linear layer, given
by

hu,v = [h′
u ⊕ h′

v]Ws, (7)

where ⊕ refers to the concatenation operation, and Ws is a learnable weight
parameter.

4.3 Multi-View Embedding

In order to enable the cooperation among the different views during the learn-
ing process and effectively fuse multi-view representations, our model enables
information sharing across all views via a scaled dot-product self-attention [15].

Given the representations from the different views as {Ei}2i=1, we stack them into
a matrix X ∈ R2×d of dimension d. We associate query, key and value matrices
Q, K and V as follows:

Q = XWQ, K = XWK , V = XWV (8)

where WQ, WK and WV are weight matrices. We then propagate information
among all views as follows:

Y = softmax

(
QKT

√
dk

)
V (9)

Êi will then be the i-th row in matrix Y , which considered as the relevant global
information for i-th view. To incorporate this information in the learning pro-
cess, we concatenate the representations of the different views (geographical and



10 Authors Suppressed Due to Excessive Length

Fig. 4. Visualization of tangible cultural heritage on the map.

knowledge views) and pass it to a fully connected (FC) layer, to predict the

distance d̂t as follows:

d̂t = [Ê1 ⊕ Ê2]Wm, (10)

where ⊕ refers to the concatenation operation, and Wm is a learnable weight
parameter.

4.4 Learning Objective

Given the ellipsoidal shape of the earth’s surface, we apply the Haversine dis-
tance [12] to calculate the distance of two points represented by their latitude
in range of {−90, 90} and longitude in range of {−180, 180}. The Haversine dis-
tance is the great circle distance between two geographical coordinate pairs. We
train our model to reduce the Mean Squared Error (MSE) loss based on the

actual and predicted Haversine distance, dt and d̂t.

5 Experiments

5.1 Datasets

In order to evaluate our model, we create three datasets using our ingestion tool
described in section 3. The datasets are about tangible (Place) and Knowledge
of three main cities in Europe: Lisbon, Barcelona and Paris.

We set the number of hops to 3, since 3-hop contains sufficient informa-
tion about each tangible cultural heritage entity. Statistics about the datasets,
including the maximum distance between geo-entites representing cultural her-
itage related places are shown in Table 2. The maximum distance between the
places in Barcelona dataset is less than in Lisbon and Paris. Lisbon dataset
is the most challenging since it contains fewer number of nodes and relations.
Moreover, Lisbon has the highest maximum distance between places. In Figure
4, we visualise the location of the tangible cultural heritage of the different cites.
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Table 2. Statistics of the city datasets.

Lisbon Barcelona Paris

#Place Nodes 2,780 5,989 26,214
#Knowledge Nodes 5,860 9,140 35,885
#Links 21,253 37,384 196,898
#Relation types 377 708 578

#Place-Place links 5,077 6,907 48,954
Maximum distance 35.32 KMs 16.76 KMs 34.69 KMs

We randomly split the links between Places into 80% and 20% sets with corre-
sponding distances for training and testing, respectively. Hyper-parameters are
optimised for the training set.

5.2 Baselines and Implementation Details

We compare our model against GAT [16] and R-GCN [13] as baselines when
textual title of the Place and Knowledge nodes are used for message-passing to
generate node embeddings. We also evaluate our model when using only the ge-
ographical view (Ours - geographical), utilizing enclosing subgraph embeddings
with R-GCN. Moreover, we experiment our model without the attention layer
(Ours - without att).

The latent embedding sizes used in all our models are set to 32. We set the
number of layers in GAT and R-GCN to 3. To train our model, we use Adam
optimizer [6] with a learning rate of 1e-4. We run our experiments on a machine
with two Intel Xeon Gold 6230 CPUs running at 2.10 GHz with 128 GB of
memory, and Nvidia Quadro RTX 5000 GPU with 16 GB of memory. Finally,
we use Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) to
measure the prediction errors.

5.3 Results

In Table 3, we present the results of the different prediction methods in terms
of MAE and RMSE. As shown, our proposed method outperform other baseline
methods. Best results are achieved on Barcelona dataset, since the maximum
distance between the places is less than the one in Lisbon and Paris.

The results show that GAT is outperforming R-GCN when applying the
message-passing technique on the whole KG for extracting node embeddings.
This indicates that GAT is able to focus on certain neighbors to represent a
Place node due to its attention mechanism. However, when applying R-GCN
on enclosing subgraphs (Ours - geographical), the performance is outperform-
ing the R-GCN baseline since the model is focusing on fewer unique relation
types representing the spatial relation. Finally, the results show that applying
an attention layer helps to fuse the multiple views in our proposed model.
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Table 3. The results showing MAE and RMSE of Haversine distance in km. Best
results are in Bold.

Lisbon Barcelona Paris

MAE RMSE MAE RMSE MAE RMSE

GAT 1.95 2.64 1.43 1.87 0.70 1.23
R-GCN 2.30 3.12 1.48 1.90 1.21 1.63

Ours - geographical 2.23 3.10 0.48 0.75 0.83 1.42
Ours - without att. 2.13 2.86 0.56 0.86 0.67 1.20

Ours 1.90 2.50 0.42 0.71 0.59 1.05

6 Conclusion

We present an ingestion tool and a framework to create a geolocalized KG for
contextualising cultural heritage. In addition, we propose a method that intro-
duces a geospatial distance restriction to refine the embedding representations
of geographic entities in a geolocalized KG, which fuses geospatial information
and semantic information into a low-dimensional vector space. We utilize this
method for a geographical distance prediction task, where we outperform base-
line methods.
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