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Abstract

Robustly estimating camera poses from a set of images
is a fundamental task which remains challenging for differ-
entiable methods, especially in the case of small and sparse
camera pose graphs. To overcome this challenge, we pro-
pose Pose-refined Rotation Averaging Graph Optimization
(PRAGO). From a set of objectness detections on unordered
images, our method reconstructs the rotational pose, and
in turn, the absolute pose, in a differentiable manner ben-
efiting from the optimization of a sequence of geometrical
tasks. We show how our objectness pose-refinement module
in PRAGO is able to refine the inherent ambiguities in pair-
wise relative pose estimation without removing edges and
avoiding making early decisions on the viability of graph
edges. PRAGO then refines the absolute rotations through
iterative graph construction, reweighting the graph edges
to compute the final rotational pose, which can be con-
verted into absolute poses using translation averaging. We
show that PRAGO is able to outperform non-differentiable
solvers on small and sparse scenes extracted from 7-Scenes
achieving a relative improvement of 21% for rotations while
achieving similar translation estimates.

1. Introduction

Most current Structure from Motion (SfM) approaches
[12, 32, 40, 42] require an initial robust estimation of ab-
solute camera poses from multi-view images. This first step
is critical, as it is the basis for obtaining a coarse 3D point
cloud by triangulation and then feeding standard non-linear
solvers [1, 46] that estimate a refined set of camera poses
(rotation and translation) and 3D geometry. Given the non-
linearity of the problem, an initialization farther away from
the optimal solution will increase the chances of obtaining
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poor-quality reconstructions or failing entirely.
As SfM pipelines evolved through time, a new trend is

to inject semantics in multi-view problems. Semantic and
object SfM approaches [4, 11] provide not only a raw 3D
point cloud, but they are able to localize objects in 3D and to
estimate their pose. Objects semantic is also used in SLAM
methods [7, 15, 29, 33, 49] to better localize the camera and
objects in structured scenes and to build 3D scene graphs for
improved scene understanding or robotic navigation [38].

On a similar trend, this paper explores how the seman-
tic information of objects can help to estimate better abso-
lute camera rotations and translations in an SfM scenario.
In particular, we address one of the hardest cases of SfM,
small-scale scenes with fewer cameras and wider baselines,
as most approaches make assumptions of large and dense
camera pose graphs, with relatively short baselines or ex-
pendable images. Whenever few cameras are available, ob-
taining a robust initialization of camera poses is harder, as
the 2D correspondences are fewer and noisier, so even out-
liers rejection methods [47] struggle to find good inliers or
eliminate too many cameras/points from the initial set.

Previous work has shown that objectness-based image
detections can refine relative poses [44] by reasoning on
higher-level semantic information. The method defines a
pose graph where each node represents a camera and its
corresponding detections, while edges relate together nodes
that have matching detections in multi-view. Taiana et
al. [44] proposed a novel graph-based computational ap-
proach embedding the images’ detections on the nodes of
the graph, and the aggregate of predictions of the refined
relative pose on the edges. Message passing propagated
information in an MLP-style alternating updates between
nodes and edges. This approach successfully improved rel-
ative poses, but was trained independently from the rest of
the pipeline, and relied on an optimization algorithm to per-
form motion averaging (i.e. EIG-SE3 [2]).

In contrast, we propose PRAGO, a differentiable pose
estimation method, which focuses on small and sparse pose
graphs where camera outlier rejection (e.g. 1DSfM [47])



might be unpractical. PRAGO uses noisy pairwise camera
poses estimated from an objectness-based approach, refines
the relative rotations and then integrates rotation averaging
to estimate absolute camera poses. As we show experimen-
tally, optimizing these tasks together can provide a signifi-
cant improvement. As PRAGO does not apply camera out-
lier rejection but instead focuses on the consistency of the
matched objectness detections, we avoid making decisions
early on the viability of the pose graph, which makes the
method highly suitable for small and sparse graphs where
the removal of even a couple of cameras would have a detri-
mental effect in later steps. Specifically, we propose a graph
where edges encode the initial relative pose and bounding
box on each respective image, while the node simply store
the intrinsic parameters for each camera. Through message-
passing updates between edges and nodes in the graph, the
nodes are updated and a new pose is regressed as input to
motion averaging. At this point, PRAGO iteratively refines
the pose graph, re-weighting the contribution of rotational
information mimicking an optimization process, where the
RAGO [27] blocks incrementally improve the accuracy of
the estimates. The rotations are combined with the refined
translations to recover absolute camera poses. To under-
stand the importance of pose refinement within PRAGO,
we provide an analysis of the orientation error and identify
that it frequently fixes chirality errors. In addition, we com-
pare to state-of-the-art combinations of independent meth-
ods, both differentiable or optimization-based.

We make three major contributions: i) we introduce the
PRAGO network for differentiable pose estimation with ob-
jectness detections where the back-propagation improves
performance in contrast to non-differential pipelines; ii) we
revise the objectness pose refinement [44] which leads to
improved accuracy; and iii) we provide an analysis of how
objectness-based pose refinement improves relative poses
and its positive effect on chirality.

2. Related work
In this section, we provide an introduction to relative pose
estimation (Sec. 2.1) and motion averaging (Sec. 2.2), a
more detailed discussion on methods dedicated to averaging
the rotation (Sec. 2.3) and translation (Sec. 2.4) components
of the pose. For a full review of SfM see Bianco et al. [6].

2.1. Relative Pose Estimation

The first step for obtaining a set of absolute camera poses
is to estimate pairwise relative poses from 2D image cor-
respondences. Given a pair of images, their relative pose
can be easily estimated via the five-point algorithm [26, 34]
or the eight-point algorithm [19]. Outlier-rejection strate-
gies such as RANSAC [14] are then used to obtain a robust
estimate with a desirable low noise. Computing a rotation
matrix and a translation unit vector from the Essential ma-

trix presents an inherent ambiguity, though, as two possible
solutions exist [34]. One of the two solutions per view is
chosen based on chirality considerations (triangulated 3D
points) [20]. Picking the incorrect combinations results in
outlier errors that can be discarded in the following steps.

More recent works on relative pose estimation leverage
deep learning to directly predict a relative pose given two
images [5, 28], or a set of feature matches and a sparse
scene reconstruction [31]. Learning-based models can also
exploit cues like light source directions, vanishing points,
and scene symmetries [9], or use Neural Radiance Fields
(NeRF) [30] to predict relative poses [50]. Finally, works
like PoserNet [44] combine the two approaches, initializing
the relative pose via geometrical methods, that are more ef-
ficient and do not require training, and then training a model
to predict and correct the noise on the predictions.

Noisy relative poses, and especially outliers, have a big
impact on motion averaging algorithms, so such algorithms
are often designed to explicitly deal with these kinds of er-
rors. Classical approaches usually address this by identi-
fying the outliers measurements by imposing cycle consis-
tency, i.e. chaining relative transformations along a closed
loop [52], or by projecting the scene graph in a lower di-
mension and solving a minimum feedback arc set problem
to identify the outliers, like 1DSfM [47]. Considering that
in the case of sparse or small pose graphs rejecting relative
poses can lead to catastrophic results (a graph with multiple
components does not contain enough information for esti-
mating coherent absolute poses), we design a pose refine-
ment module to learn to refine, rather than to reject them.

2.2. Motion Averaging

Relative poses are combined to extract absolute poses
through optimization algorithms that simultaneously opti-
mize over the orientation and translation components of the
pose [2, 3, 10, 32, 48, 51]. Other optimization-based ap-
proaches instead decouple rotation estimation from trans-
lation and scene reconstruction, and focus on either rota-
tion [24, 37] or translation [54] averaging. Finally, there are
methods that focus on object detections, performing diffu-
sion and clustering to compute the candidate poses of the
input objects, optimizing the best pose for each object and
then refining the camera poses [43].

2.3. Rotation Averaging

To recover the absolute camera orientations, some meth-
ods decouple in Bundle Adjustment (BA) rotation estima-
tion from translation and scene reconstruction [24]; or im-
prove on it by combining a global optimizer with fast view
graph filtering and a local optimizer [10]. Other meth-
ods propose incremental approaches, prioritizing the aver-
aging over camera pairs whose relative pose is supported
by more triplets in the view graph, to increase robustness



Figure 1. From a set of unordered images a), we compute objectness detections and construct an initial relative pose graph from b) the
5-Point pose estimates. PRAGO refines the relative pose using the objectness detections resolving, among others, the chirality issues before
inferring the rotational poses using RAGO blocks which iteratively infer the rotational pose by reweighting the graph edges. The absolute
rotations and refined translations are then combined in e) translation averaging using BATA to construct the f) absolute camera poses.

to outliers [25]. Regarding GNN-based approaches, Neu-
RoRA [37] combines a GNN that generates outlier scores
and an estimated rotation error for each input relative pose
(CleanNet), with a graph network that performs rotation av-
eraging only on the inliers. Subsequent works on multi-
ple rotation averaging include GNNs that perform both ini-
tialization and optimization through a differentiable multi-
source propagation module [48], or iterative approaches like
RAGO [27], which learns to incrementally optimize rela-
tive pose estimates using only supervision on the relative
poses. Drawing from the success of NeRFs in computer vi-
sion, other methods perform multiple motion averaging in
the neural volume rendering framework [21]. More recent
works investigate the possibility of unsupervised models for
rotation averaging, based on deep matrix factorization [45]
and directly propagating the uncertainty from the keypoint
correspondences used in relative pose estimation, to more
accurately model the underlying noise distributions [53].

2.4. Translation Averaging

Translation averaging uses as input pairwise relative trans-
lations and the (possibly) noisy absolute rotations from the
previous rotation averaging step. Classical approaches [18]
predict absolute translation by optimizing the l2 norm of
the vector product between each input relative translation
direction and the distance between the corresponding pre-
dicted absolute translations. Subsequent works improved
results by relaxing the loss to l∞ [32], by introducing a
least unsquared deviations (LUD) form [35], or by redefin-
ing the problems as the minimization of the projection of
the absolute translations difference onto the relative trans-
lation direction [17]. These methods manage to frame the
problem as the minimization of a convex cost function, but
the scale ambiguity on each translation still requires exten-
sive preprocessing strategies. Other approaches consider

instead angular residuals θij between the predicted and ob-
served translation directions, framing the task as a quasi-
convex problem on tan θij , solved through a sequence of
Second Order Cone Programming (SOCP) problems [41].
To reduce the impact of outliers, other works directly min-
imize a non-linear cost function of sinθij via Levenberg-
Marquard [47] or iteratively reweighted Least Squares [54].

3. PRAGO for Objectness Refined Rotation
Averaging

We propose PRAGO, an end-to-end network for relative
pose refinement and rotation averaging, aimed towards the
estimation of absolute camera poses [R∗, T ∗]. Our model
takes as input a set of images with matched objectness de-
tections (Fig. 1a) and, as proposed in PoserNet [44], we
exploit information on matched detections to define covis-
ibility, and employ the 5-point algorithm to generate rela-
tive pose estimation (Fig. 1b). This results in a sparsely
connected view graph, with noisy relative pose estimates
which may contain outliers. First, we use objectness-based
relative pose refinement (Fig. 1c) to correct or refine out-
liers (Sec. 3.2). Then the refined poses are passed to a rota-
tion averaging module (Fig. 1d) to produce a set of absolute
camera orientations (Sec 3.3). Both refined relative poses
and absolute rotations are input to a translation averaging
algorithm (Fig. 1e) to predict the absolute camera poses
(Fig. 1, Sec. 3.4). To frame the problem, we first establish
the preliminaries and notation in Sec 3.1, before defining
the PRAGO components.

3.1. Preliminary Problem Formulation

Motion averaging is defined as the problem of recovering
the absolute orientation R̂ and translation T̂ for a set of N
cameras, given a set or noisy observed relative orientations
Rij and translations unit vectors Tij . For a pair of cameras



(i, j), given perfect relative transformations R̂ij and T̂ij ,
their relations with absolute poses are defined as:

R̂ij = R̂iR̂
T
j , R̂iT̂ij =

T̂j − T̂i

∥T̂j − T̂i∥2
. (1)

The observed relative poses are, however, affected by noise
and can include outliers.

A standard solution to motion averaging is to split the
problem into two optimization steps, one for the rotations
and one for the translations, computing the absolute poses
more compatible with the observations. The absolute orien-
tations R∗ are estimated by minimizing a robust cost func-
tion ρ(·) of the distance dR(·) between Rij and the pre-
dicted R̃ij = R̃iR̃

T
j as:

R∗ = argmin
R={Ri}

∑
(i,j)∈E

ρ(dR(Rij , RiR
T
j )). (2)

The solution to this problem is, however, not unique. Ap-
plying the same rigid transformation to all absolute orienta-
tions R̃ does not change the relative orientations: RiR

T
j =

RiR̄R̄TRT
j = (RiR̄)(RjR̄)T . To make the solution unam-

biguous, a fixed gauge transformation is needed.
Given the predicted R∗, a cost function σ and a vector

distance dT (·), the absolute translations are obtained as:

T ∗ = argmin
T={Ti}

∑
(i,j)∈E

σ(dT (Tij , R
∗ T
i (Tj − Ti))). (3)

In Eq. 2 and Eq. 3, the cost functions ρ(·) and σ(·) model
the noise on the relative transformations; the same prob-
lems can be approached with a learning paradigm, training
a network to implicitly model the noise. In this case, graph
networks are especially well suited, as the problem can be
naturally described as a graph G = (N , E), where nodes
Ni ∈ N represent the cameras, and edges eij ∈ E represent
the observed relative poses between nodes i and j.

3.2. Relative Pose Refinement

To learn how to correct the relative pose outliers, we opt for
a graph-based approach. Each camera Ci is associated to a
node, whose initial embedding is defined as h = [f,H,W ],
where f is the camera focal length and H and W are the
height and width of the associated image. We then draw for
each image pair (i, j) a set of directed edges, for each pair
of matched objectness detections (l,m) with l ∈ i,m ∈ j.
This is, in contrast, with [44], which draws a single edge
between a pair of nodes, and handles the multiple detec-
tions on one node in an ad hoc way. We define the edges
embeddings by concatenating the relative pose between the
cameras, [Rij , Tij ], and the bounding boxes BBi

l and BBj
m

associated to the two detections. The former are represented
as a quaternion for the rotation and as a unit vector for the

translation. The latter are defined as BB = [x, y, bbw, bbh],
where x and y are the pixel location of the upper left bound-
ing box corner and bbw and bbh respectively represent the
bounding box’s width and height in pixels. This graph is
passed through two GATv2 [8] layers, modified to include
the edge embeddings in the node’s updates (drawing from
Edge-GAT [22]) and to apply attention. During this process,
only the node embeddings are updated, while the edge em-
bedding preserve information about the bounding boxes lo-
cations and the input relative poses. In contrast, [44] applies
an ad hoc GNN which updates both edge and node informa-
tion. To update the relative pose between camera pair (i, j),
we first use an MLP to merge together the concatenation of
the learned embeddings of the nodes, hij = MLP([hi, hj ]).
Then, a second MLP takes as input the noisy relative pose
and this joint embedding, to generate a refined pose as

R̃ij , T̃ij = MLP([Rij , Tij , hij ]). (4)

Both the graph network and the two MLPs are trained to
minimize the loss

Lref = Lorient + Ltr dir + γ(Lq|| + Ltr||), (5)

where Lorient and Ltr dir are angular losses, based re-
spectively on the quaternion combination R̃ij ◦ R̂ij and on
cos−1(T̃ij ·T̂ij∥T̂ij∥−1); Lq|| and Ltr|| are respectively nor-
malization losses on the quaternions and unit vectors; and γ
is a coefficient used to tune the contribution of the different
components of the loss empirically set to 0.5.

3.3. Rotation Averaging

Given the refined relative poses, we combine them to pre-
dict the best fitting absolute orientations R̃, drawing from
the RAGO [27] architecture. This module uses two Gated
Recurrent Units (GRU) to iteratively update the global ori-
entation of node i and the relative orientations of its nearest
neighbors Ni. First, the absolute poses Ri are randomly
initialized; then, Ri, R̃ij and G are passed to four MPNN
to generate features g for each node and edge, and initial-
ization embeddings for the hidden states of the node and
edges in the GRUs. At each optimization step k = 1, . . .K,
the cost of the current absolute and relative orientations for
node i are respectively dki and dkij :

dki =
1

Ni

∑
j∈Ni

∥Rk
i − R̃ijR

k
j ∥. (6)

dkij = ∥Rk
ij −Rk

i R
k T
j ∥+ ∥Rk

ij − R̃ij∥. (7)

Here, Rt
ij is an estimated relative pose, obtained by recti-

fying Rk
i R

k T
j to align it to R̃ij ; the cost of Eq. 7 will then

act as an outlier score, as it will tend to 0 for inliers and will
be large for outliers. Another MPNN extracts features Ck



from the cost function, that are concatenated with the cur-
rent orientation Rk and the features into Ik = [Ck, Rk, g].
The current orientations can then be updated as:

hk = GRU(hk−1, Ik) ∆Rk = Φ(hk), (8)

where hk is the hidden state of the GRU nodes as time k, Φ
is an MLP. ∆Rk is a correction to the orientation estimate,
allowing to update the current predictions as

Rk+1
i = Rk

i ∆Rk
i Rk+1

ij = Rk
ij∆Rk

ij . (9)

To speed up convergence, during training nodes and edges
are optimized in alternated fashion; for a fixed number of
node (Kn) and edge (Ke) iterations, the loss is given by:

Lavg =
1

|E|

Kn∑
k=1

∑
(i,j)∈E

γKn−k∥RT
i R

k T
j − R̂ij∥1+

1

|E|

Ke∑
k=1

∑
(i,j)∈E

γKe−k∥RT
ij − R̂ij∥1.

(10)

Note that this loss enforces supervision only on the ground-
truth relative pose R̂ij , and not on the absolute poses. This
avoids the gauge ambiguity issue. At convergence, the ab-
solute rotation poses prediction is given by R∗ = {RK

i }.
The PRAGO components for pose refinement and rota-

tion averaging modules are fully differentiable, and can be
trained end-to-end by minimizing the final loss:

L = α · Lref + β · Lavg, (11)

where α and β are scaling coefficients. In practice, the
residual on Lref is approximately two orders of magnitude
larger than Lref , and we set α = 1, β = 0.01.

3.4. Translation Averaging

The relative poses from Pose Refinement and absolute
orientations generated by Rotational Averaging are com-
bined to predict absolute translations. For this, we apply
BATA [54], which frames translation averaging as an opti-
mization problem of a bilinear objective function. BATA in-
troduces a variable that performs normalization on the trans-
lations to base the loss on the angular error on the transla-
tion unit vectors, avoiding numerical instability due to scale
ambiguity (Sec. 2.4). This prevents translation vectors with
a larger module from dominating the loss; in fact, at parity
of noise on the orientation and on the module, the differ-
ence between ground truth and estimated translation vector
will be proportional to the vector module. In contrast, a loss
based on an angular distance will treat all relative transla-
tions similarly, regardless of the actual pairwise distance.
The absolute translations of Eq. 3 can be found by mini-
mizing:

T ∗ = argmin
T,d

∑
(ij)∈E

µ(∥(Tj − Ti)dij − T̃ij∥2) (12)

where µ(.) is a robust M-estimator and d is a non-negative
variable, used to scale the module of Tj − Ti. This can be
solved by including two constraints:∑

i∈V
Ti = 0

∑
(ij)∈E

⟨Tj − Ti, T̃ij⟩ = 1, (13)

which respectively impose a reference system and a scale.
Note that Eq. 12 essentially is a Least Squares objective em-
bedded in an M-estimator to account for the presence of out-
liers in the input data, and can be efficiently resolved using
an iteratively reweighted Least Squares scheme. As rotation
averaging is typically considered more reliable than trans-
lation averaging, BATA uses the following residuals:

ϵ =
√

∥(Tj − Ti)dij − T̃ij∥22 + ∥R̃ij −R∗
iR

∗ T
j ∥22, (14)

to update the weights. Combined with the absolute orienta-
tions, this results in full camera poses [R∗, T ∗], which we
can compare against the ground truth poses [R̂, T̂ ] to evalu-
ate the full pipeline.

4. Evaluation
We first present results highlighting the effectiveness of
PRAGO on real-world data, comparing our pipeline against
baseline motion averaging approaches (Sec. 4.1); then, we
report on ablation tests that explore how to best combine
the components of the loss of PRAGO and how our relative
pose refinement compares against PoserNet [44] (Sec. 4.2).
Finally, in Sec. 4.3, we investigate how the relative pose
accuracy changes after pose refinement, and how these
changes affect the accuracy of absolute pose estimates.

Dataset – For the evaluation setting, we adopt the 7-
scenes dataset [16] following the methodology of [44]. In
particular, we use the view graphs from the “small graphs
dataset”, which consists of 14000 training graphs (2000
per scene) and 7000 test graphs (1000 graphs per scene).
Each graph’s image contains objectness detections gener-
ated through a pre-trained Object Localization Network
(OLN) [23], and matches defined by an oracle, using the in-
tersection over union of the projection of one bounding box
onto the other, for each possible pair of bounding boxes.
Each graph contains eight nodes, with a connectivity dic-
tated by having at least three matched detections, and rel-
ative camera poses between the two images estimated us-
ing SuperGlue [39], the five-point algorithm and RANSAC.
This results in an average of 15.5 edges per graph out of
the possible 28 edges (55.36% connectivity). We note that
3.8% of the test graphs contain multiple components, which
is not an issue for relative pose (as the focus of [44]) but
a problem for absolute pose estimation. To overcome this
issue, we present results on the 6731 test graphs, which
contain one single component, and re-evaluate the Poser-
Net baseline in ablation. For a full discussion of the object
detections, matching and graph generation process see [44].



Orientation Translation

Pipeline 3◦ 5◦ 10◦ 30◦ 45◦ η 0.05 m 0.1 m 0.25 m 0.5 m 0.75 m η

Non-fully
differentiable

PoserNet + EIG-SE3 28.15% 60.26% 85.72% 94.43% 96.55% 4.21◦ 0.04% 2.69% 34.88% 76.21% 94.19% 0.33 m
PoserNet + NeuRoRA + BATA 22.60% 55.91% 84.89% 95.97% 97.37% 4.59◦ 1.20% 10.07% 36.89% 66.68% 85.77% 0.35 m
PoserNet + RAGO + BATA 28.84% 59.68% 87.28% 96.17% 97.53% 4.26◦ 1.50% 11.59% 40.97% 71.58% 90.09% 0.31 m

Differentiable PRAGO (Ours) + BATA 37.88% 65.59% 89.29% 96.32% 97.56% 3.77◦ 0.34% 4.47% 33.23% 67.84% 89.41% 0.36 m

Table 1. The Table presents rotation and translation median errors η and the percentage of test graphs that falls under a given error threshold
for rotation ( 3◦, 5◦, 10◦, 30◦, 45◦) and translation (0.05 m, 0.1 m, 0.25 m, 0.5 m, 0.75 m). We evaluate three baseline approaches that
use non-fully-differentiable pose refinement against PRAGO. Best and second best values for each column are highlighted in bold and
underlined, respectively.
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Figure 2. Histograms with natural (left) and logarithmic frequency
axis (right) of absolute orientation errors produced by PRAGO
(green) and by applying the pose refinement and the rotation aver-
aging modules independently (pink). Histograms are overlaid with
partial transparency.

4.1. PRAGO Evaluation

We compare the performance achieved by the fully-
differentiable PRAGO with that achieved by applying the
pose refinement module and the rotation averaging module
trained independently. For reference, we also include base-
line results obtained using the EIG-SE3 [2] motion averag-
ing algorithm, or using the NeuRoRA [37] rotation averag-
ing method instead of RAGO. Results are reported in Tab. 1,
expressed in the form of the median error η (the smaller the
better) and as the percentage of testing graphs with and av-
erage error smaller than predefined thresholds (the higher
the better). Such thresholds are 3, 5, 10, 30 and 45 degrees
for the angular metric, and 0.05, 0.1, 0.25, 0.5 and 0.75
for errors expressed in meters. It can be seen that apply-
ing PRAGO achieves better orientation accuracy than the
non-fully-differentiable baselines, both in terms of median
error (3.77◦, against the second best of 4.21◦ achieved by
PoserNet followed by EIG-SE3) and in terms of percentage
of graphs with errors below the specified thresholds. This
improvement comes at the cost of a slightly lower accu-
racy for the estimated translations, with a median of 0.36m
compared with the 0.31 m achieved by running PoserNet,
RAGO and BATA in a sequence. The histogram of orien-
tation errors obtained by applying PRAGO versus applying
separately trained pose orientation and rotation averaging
modules are shown in Fig. 2. It can be seen that PRAGO

produces an overall better output distribution, with more er-
rors concentrated bin corresponding to lowest error values.

4.2. Ablations

To provide further insight on the design choices of the pro-
posed pipeline, first we ablate across the hyper-parameters
of PRAGO (Eq. 11); then, we compare our revised version
of objectness pose refinement against PoserNet.
Combining partial loss functions – When training the
fully differentiable PRAGO, we have the problem on how
best to combine the losses as in Eq. 11. We devised three
strategies: driving the learning using exclusively the rota-
tion averaging loss (α = 0, β = 1), driving it by naively
adding the two loss components (α = 1, β = 1) and, fi-
nally, driving the learning by weighting the loss components
so that they would have comparable values at the end of the
training of the single components (α = 1, β = 0.01). As
can be seen in Tab. 2, relying exclusively on the rotation
averaging loss leads to the overall best result in terms of
rotation averaging, but this comes with a large penalty for
translation averaging, with a median error almost twice as
high as that achieved by the other loss combination schemes
(0.61m versus 0.36m and 0.32m).

Lref Labs Orientation error (deg) Translation error (meters)

0.00 1.00 3.75 0.61

1.00 1.00 3.77 0.36

1.00 0.01 3.87 0.32

Table 2. Absolute orientation and translation errors achieved by
using different weights for combining PRAGO’s losses. Weights
for each component are listed in the Lref and Labs columns.

Pipeline Orient. error (deg) Transl. error (meters)

PoserNet + EIG-SE3 4.97 0.32

Enhanced pose ref. + EIG-SE3 4.21 0.33

Table 3. Absolute orientation and translation errors achieved by
using either PoserNet or the proposed relative pose refinement ar-
chitecture prior to applying EIG-SE3.
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Figure 3. Effect of objectness-based pose refinement on the input relative poses. Left and center, natural and logarithmic histograms of
edge-wise orientation error, respectively, for the test set with raw initial poses (violet) and refined poses (green). Right, shows a matrix
representing the refinement effect based on relative orientation error. The color represents log10 of the number of graphs that belong to one
cell of the matrix.

Enhanced objectness-based pose refinement – We com-
pare the performance obtained by EIG-SE3 when applied
respectively on relative poses refined either by PoserNet or
by the pose refinement architecture we propose. As it can
be seen in Tab. 3, applying the proposed refinement archi-
tecture rather than PoserNet shows a drop in median orien-
tation error from 4.97◦ to 4.21◦, while the corresponding
impact on median translation error is negligible.

4.3. Analysis of the effect of pose refinement

In the initial formulation of objectness relative pose refine-
ment in PoserNet [44] showed the benefits of refining rel-
ative poses and, thus, leading to more accurate absolute
poses. We explore this further to understand and explain
a possible cause for this improvement firstly in its relative
setting then in absolute when applying motion averaging.
Refining relative poses with objectness – We characterize
the effect of the proposed enhanced pose refinement archi-
tecture has on estimates affected by different levels of noise.
From the edge-wise orientation error histograms in Fig. 3 it
can be seen that pose refinement greatly reduces the num-
ber of estimates with orientation error larger than 160◦, the
ones which likely stem from an incorrect chirality choice.
The transfer matrix on the right side of Fig. 3 visualizes the
effect pose refinement has on estimates affected by different
levels of noise. Elements below and above the main diag-
onal correspond to estimates whose accuracy is increased
or decreased, respectively. On the bottom-left corner of the
matrix, it can be seen that many estimates with the wrong
chirality are corrected to very accurate values (many of the
input estimates that fall in the bin centered at 176◦ are cor-
rected to estimates that fall in the bin centered at 1◦). This
chirality-correction property is not perfect, though, as other
such estimates are corrected to estimates with lower, but
non-negligible levels of error (e.g., estimates that are moved
from the bin centered on 176◦ to that centered on 46◦).
Other effects are visible on the matrix, though perhaps not

Motion Averaging
Pipeline

Type of
input poses

Orientation error
(deg)

Translation error
(meters)

EIG-SE3 Raw 25.22 0.61

Refined 4.21 0.33

NeuRoRA, BATA Raw 5.84 0.61

Refined 4.59 0.35

RAGO, BATA Raw 5.09 0.60

Refined 4.26 0.31
PRAGO (Fully diff.) Raw 3.77 0.36

Table 4. Impact of relative pose refinement on absolute poses.
Orientation and translation error are shown for different motion
averaging pipelines fed with either raw or refined relative poses.
The performance of PRAGO is shown for reference.

as clearly or not with a straightforward interpretation. On
the top-left corner of the matrix, it can be seen that esti-
mates with lower input errors can be affected both positively
and negatively by the refinement. Finally, the high values
present on the first column of the matrix indicate that many
estimates are corrected to very low error values.

This analysis highlights that objectness-based relative
pose refinement has a strong positive impact on estimates
affected by incorrect chirality, while also improving other
estimates, suggesting that it could be especially important
when coupled with motion averaging systems which do not
implement an outlier rejection strategy.
Impact of relative pose refinement on Motion Averaging
– To understand the cumulative effect of applying object-
ness relative pose refinement, we compare the performance
achieved by pairing the proposed pose-refinement architec-
ture with three different Motion Averaging systems: EIG-
SE3, NeuRoRA followed by BATA, and RAGO followed
by BATA. It is important to notice that EIG-SE3 is not train-
able, so it is applied without any customization to the prob-
lem. For NeuRoRA, we fine-tuned its two pre-trained net-
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Figure 4. Natural (top) and logarithmic (bottom) histograms of the absolute orientation error achieved by different rotation averaging
methods (EIG-SE3, NeuRoRA and RAGO) applied either on raw relative poses (blue) or on refined relative poses (yellow).

works (CleanNet and FineNet) on the training data from 7-
Scenes as provided in [44]. We trained RAGO from scratch
on the same training data and applied it on the test data di-
rectly. The authors of RAGO mention that they preprocess
real data with NeuRoRA’s CleanNet, but for our experi-
ments, we opted to apply it directly on raw relative poses
or to the refined ones.

We report the orientation and translation errors on raw
and refined relative poses in Tab. 4, and show the corre-
sponding histograms of orientation errors in Fig. 4. The re-
sults show that applying objectness-based pose refinement
is beneficial for all motion averaging algorithms, with the
median translation error dropping from roughly 0.6 m to
roughly 0.3 m for all of them. In terms of absolute ori-
entation errors, EIG-SE3 is the algorithm which benefits
the most from the relative pose refinement. When applied
on raw relative transformations, EIG-SE3 produces the es-
timates with the highest median rotational error (25.22◦),
highlighting a sensitivity to highly noisy input data. As can
be seen in Fig. 4a, EIG-SE3 is not able to solve all the chi-
rality errors present in the raw input data (a considerable
number of its output estimates have errors close to 180◦).
When applied on refined relative poses (where most very
high errors have been reduced), instead, EIG-SE3 produces
the lowest median orientation error of all methods (4.21◦),
narrowly beating RAGO.

4.4. Implementation details

As the input relative poses, we used the five-point poses
from [44]. We implemented the architecture for objectness-
based pose refinement using the PyTorch framework [36]
and PyTorch Geometric [13], and trained it using the Adam

optimizer with learning rate 0.0001 and batch size 1. We
used a schedule to reduce the learning rate by a factor of
0.316 with a patience of 3 epochs. We used the author im-
plementation for each of the other methods , EIG-SE3[2],
RAGO [27], NeuRoRA [37] and BATA [54]. For training or
fine-turning those methods, we used the training set defined
in [44], and the hyperparameters present in their code or de-
fined in their papers. For the training PRAGO, we started
from versions of the pose refinement and rotation averaging
models trained in isolation, and fine-tuned the joint system
using the same hyperparameters described earlier.

5. Conclusion

We have presented PRAGO, a novel differentiable cam-
era pose estimation approach exploiting objectness detec-
tions. Our method takes as input a set of unordered im-
ages with their corresponding detections to estimate initial
pair-wise relative poses. The pairwise rotations are then re-
fined with a novel approach that can work efficiently with
rotational averaging iterative optimization blocks. By dif-
ferentiating through the method, we have shown that the
PRAGO method can achieve superior performance in con-
trast to concatenating its pre-trained components. In addi-
tion, through analysis, we have shown that a key cause of
the performance increase is improving the pair-wise orien-
tation errors, especially in the case of chirality, during pose
refinement, a step largely unconsidered by large-scale tech-
niques with abundant images. PRAGO has demonstrated
the benefits of learning in an end-to-end fashion, as opposed
to focusing on the optimization of individual tasks alone.
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